You are here

Planning for the 21st Century Grid | Energy Manager Today

Primary tabs

USRS

4 cover

grid, electricity, energy

http://www.energymanagertoday.com/planning-21st-century-grid-0104168/

Planning for the 21st Century Grid

It seems everyone involved with renewable energy and climate change is asking the same question these days. What will the 21st century grid look like? This is one of the key questions the Department of Energy is asking as part of the first “Quadrennial Energy Review (QER)” seeking to understand how much modernizing the nation’s energy infrastructure will need in the coming years.

Prognosticating the future with or without computer models is a sketchy business. But some things are becoming clear with regard to our future needs. According to panelists at the July 11th DOE meeting I participated in in Portland, Oregon (including such industry leaders as Jim Robb, CEO of the Western Electricity Coordinating Council; Elliot Mainzer, Administrator of the Bonneville Power Administration; Steve Berberich, CEO of the California Independent System Operator; Patrick Reiten, President and CEO, Pacific Power; and the ever-droll and insightful John Savage of the Oregon Public Utilities Commission among others), the grid of the future – and the future is now – will be nimble, flexible, and much more coordinated. All of that is good news for renewable energy integration, climate mitigation and system reliability.

Hold onto your hat, Mr. Edison

In fact, the United States electricity system is undergoing more change, and faster, than it has in many decades. Numerous factors are driving this change. Among the most influential are:

the resource mix is being turned on its head, including a large and rapid increase of clean renewable generation as technology and renewable power prices plummet;
climate change actions are finally getting launched as President Obama gets serious in the absence of congressional effort (to say nothing of outright climate denial by GOP leaders) of any kind;
energy efficiency and demand response – reducing the need for new generation and transmission – are increasingly large contributors to our energy and grid support needs;
utility customers on the distribution grid are becoming generators of power, no longer content to simply consume power;
lower cost unconventional gas resources are choking the life out of baseload conventional power sources like coal and nuclear energy; and,
the need to contain costs as we meet present and future needs.
What is truly remarkable is the speed with which major changes are occurring. In an industry that Thomas Edison would probably be able to correctly identify many of the current era’s components, and which is intrinsically much more conservative than almost any other you can name, the pace of transition is extraordinarily fast.

Innovation nation

This rapid change is being further fueled by the advances and deployment of advanced power electronics, controllable and dispatchable energy efficiency and demand response programs that are transforming the distribution grid, markets, and policies; as well as the introduction of information technology and electricity storage that is increasing the speed and improving the economy of system operations. Innovation is everywhere.

The generation sources, infrastructure technology, regulatory structures, operational practices and even time honored business models are all evolving. Federal state and even local climate policy initiatives are moving the electrical system inexorably toward low and no carbon resources like solar, wind and geothermal energy. These generation sources behave differently than the “conventional” and dirty thermal resources they are replacing, and require more from grid operators than was needed in the past. Addressing escalating climate change and costly and destructive extreme weather events such as Super storm Sandy have revealed an urgent need to bolster the system and improve “resiliency,” the ability to quickly restore service after storm-related or other outages occur.

No loitering allowed

New challenges demand that the system change, modernize (including increased automation in controlling it) and most of all get better. We cannot run a 21st century grid with 1950s technologies, fuel sources and practices. The good news is steps are being taken to usher the new grid in.

And none too soon either. According to Mark Chediak, Jim Polson, and Ken Wells writing in the July 10, 2014 Bloomberg Business Week:

“Power outages are up 285 percent since 1984, and the US ranks last among the top nine Western industrialized nations in the average length of outages, which the federal US Energy Information Administration says cost businesses as much as $150 billion a year.”

The transformation of the electrical system is not just inevitable, it is already underway. But will it happen in dribs and drabs as the original formation of the grid did, when it was initially designed to meet localized needs and gradually expanded into a regionally-controlled national behemoth? Or will we anticipate our needs, maximize the investment generations of Americans made in the current system and evolve something scalable and upgradable that can meet our needs long into the future?

Cleaner, faster, cheaper, safer

Here are the main directions grid modernization seems to be heading in:

Consolidating and better coordinating control areas and enhancing operators’ ability to see what is happening in neighboring parts of the grid is one major theme.
Identifying system vulnerabilities through the analysis of previous system collapses like the Southwest blackout of September 2011 is another. It turns out that the same measures that make the system more flexible and reliably operated make integrating growing amounts of variable renewable energy resources easier and less expensive. A cleaner grid is a more reliable grid. It’s like feeding two birds with one seed.
Speed, efficiency, and enhanced coordination and control are some of the most important characteristics defining the 21st century grid. Flexibility, resiliency and security (in the face of both cyber and physical attacks) are the system’s most critical needs.
Our comments to the Portland QER meeting elaborated on these themes. The comment can be found at: http://energy.gov/sites/prod/files/2014/07/f17/portland_zichellacarl_statement_qer.pdf.

The cleaner fuels we are already relying on will require adjustments in how we plan, design and build infrastructure. And innovation – of a scale that is common in information technology, but unheard of in the utility field – is here, more is coming and it will continue to change how we generate, store and transmit energy to our people.

Carl Zichella is the director for Western transmission for NRDC. He is the organization’s lead staff for western U.S. renewable energy transmission siting and serves on a nationwide team working on renewable energy development issues. In this role he works with stakeholders from environmental organizations, renewable energy development and transmission industries, local, state and national governments, regulatory agencies and the public to find renewable energy transmission solutions that accelerate renewable energy development while respecting wildlife and land conservation efforts.

This article was republished from the NRDC Switchboard blog, with permission from the NRDC.

Groups this Group Post belongs to: 

Comments

howdy folks
Page loaded in 0.385 seconds.